Chapter 3

Defects in Solids

There are many reasons for studying imperfections in solids. Important properties
of solids depend on defects in the atomic and electronic structure of crystals. For
example, it is well established that diffusion in metallic crystals depends on the
presence of vacancies in the lattice. Plastic deformation in metals is known to be
associated with the motion of dislocations. The electrical conductivity of many ionic
solids is associated with the movements of vacancies or interstitial ions. The elec-
trical behavior of semiconducting crystals is related to electronic imperfections.
These are but a few of the practical reasons for discussing imperfections. However,
it is not necessary to look only at practical considerations to justify the study of
imperfections. Imperfections are interesting per se, in crystals, in oriental rugs, in
postage stamps, and even in people. It has been said that a perfectly righteous person
is to be respected and admired . . . but it is the sinner who makes the more intriguing
study ... and more interesting company.

This chapter treats crystal imperfections from the thermodynamic point of view.
It has been noted that imperfections can be observed and analyzed in two extremes
of concentration. When very dilute, imperfections are present in such low concen-
trations that they may be regarded as discrete entities with well-defined individual
natures. This is true of point defects such as vacancies or interstitial atoms. Each
such defect can be assigned properties. such as an energy and an entropy of for-
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68 Chapter 3/Detects 1in Sohids

mation, that are independent of the presence of all other imperfections. An individual
defect may interact with others to form simple combinations such as pairs. Again,
these simple combinations may be treated as separate entities and assigned energies
and entropies of their own.

At the opposite extreme of concentration, the density of defects is so high that
each defect loses its individual property to the nature of the group. Surfaces, such
as grain boundaries, fall into this category. These group structures may be assigned
propertics such as interfacial tension, that make their description in thermodynamic
terms possible.

This chapter deals with the thermodynamics of point defects. The thermodynam-
ics of surfaces is treated in Chapter 4.

3.1 STRUCTURAL POINT DEFECTS IN ELEMENTAL
CRYSTALS

A missing atom in the crystal structure of an elemental crystal is a vacancy or a
point defect. If the absence of an atom on a lattice site causes no changes in the rest
of the crystal, we can apply in a simple way the principles learned in Section 2.6 to
the case of vacancies in elemental crystals. The crystal will consist of N atoms and
n vacant lactice sites (vacancies). Assume that the energy to create such a vacancy
is given by E,. There are thus two states of a lattice site to be considered:

an occupied state E=0
an unoccupied state E=EFE,
The probability of finding such an unoccupied state is related to the cnergy
required to produce the vacancy and the temperature of the crystal (from Section
2.5, Eq2.7)is:

exp(—EJKT)

= 3.1
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Equation 3.2 shows that at temperatures above absolute zero, elemental crystals
at equilibrium contain vacancies. A typical value, such as the one for elemental
aluminum, is E. = 0.75 eV (72.4 kJ/mol).

Actually, the absence of an atom on a lattice site changes the vibration patterns
of neighboring atoms (Figure 3.1). We must therefore take into account not only the
encrgy (or enthalpy) required to produce a vacancy, but also the entropy changes in
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Figure 3.1 Effects of vacancy on
nearest neighbors: all are ascribed
to the vacancy.

the area surrounding that vacancy. At equilibrium, the Gibbs free energy of the
crystalis at a minimum with respect to the number of vacancies present at constant
iperature and pressure. The molar Gibbs free energy change, AG between the
imperfect (G,) and perfect crystal (G,)is

ien

AG =G, ~ G, =nAH, — T AS 3.3)

where AH, = enthalpy of formation of a vacancy
n = number of vacancies.

The entropy term, AS, can be expressed as follows:
AS = n AS, + AS, 3.4
The total change in molar entropy AS is equal to the sum of entropy change
required (o create the vacancy AS, and the configurational entropy AS., which is
related 1o the uncertainty in the spatial location of the vacancy. Assuming a random

distribution of vacancies, this configurational entropy term can be expressed as fol-

WS

N + n)!

S, =kl 0 = kI | DL (3.5)
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After applying the Stirling approximation, we can write an expression for AG:

AG = n (AH, ~ T AS) — KTIIN + n) In(N + n) — NInN — n In nl  (3.6)

The minimum of AG as a function of the number of imperfections is:

f) = AH, — TAS, + kT In ( i ) =0 (3.7)
on /, - : N+ n
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Solving for the fraction of vacant sites (x,):

n AS,) —AH,
¢ = = o FEY 3.
1 N+ n exp ( k ) Exp < kT ) (.5)

In general, for imperfections,

A (gAH“) (3.9)
x, = Aexp 3.
! PA\Tkr
where A = 0 exp(AS,/k) and 6 is a factor to account for variations in crystallography.
Note that x, = n/N because n; << N.

By taking the natural logarithm of both sides, Eq. 3.9 may also be written as
follows:

AH,\ (1
nx, =InA - (——) («) (3.10)
AV

In this form it is apparent that a graph of the natural logarithm of the defect
concentration (or some quantity or property linearly dependent on it) on the ordinate,
and inverse absolute temperature on the abscissa, will be a straight line with a slope
equal to the negative of the enthalpy of formation of the imperfection divided by k,
the Boltzmann constant (Figure 3.2).

From the foregoing analysis, we conclude that vacancies are an equilibrium fea-
ture in elemental crystals at temperatures above absolute zero. These are called
intrinsic vacancies, because they are an inherent part of the crystal. If the only
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Figure 3.2 Fraction of imperfections (vacancies) as
a function of inverse absolute temperature.
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Intrinsic defects

Figure 3.3 Fraction of imperfections  (intrinsic
-andextrinsic) as a function of inverse absolute
temperature.

vacancies present in a crystal are intrinsic vacancies, we will observe the linearity
of In x; v I/T shown in Figure 3.2. The concentration of vacancies may. however
be influenced by factors other than temperature.

The addition of impurities can, by distorting the lattice, create conditions near the
impurity atoms that favor a vacancy concentration higher than the intrinsic concen-
tration. The vacancies generated by such extraneous factors are called extrinsic
vacancies. The presence of extrinsic vacancies usually manifests itself as a deviation
from the linearity of In x, versus /T (Eq. 3.9) shown in Figure 3.2. Typically. this
nonlinearity develops at lower temperatures (higher values of 1/T), as shown in
Figure 3.3. This chapter discusses several cases of extrinsic imperfections.

3.2 VACANCIES: EXPERIMENTAL VERIFICATION

In principle it should be possible to determine the values of AH, and AS, from a
knowledge of the number of imperfections as a function of temperature. Unfortu-
nately. it is difficult to measure the absolute number of imperfections. It is possible,
however, to infer AH, and AS, by measuring the change in the number of imper-
fections with temperature. An especially novel approach to the problem was dem-
onstrated successfully by Simmons and Balluff (Refs. 1 and 2),' who asserted that

'Other methods have also been used to establish the temperature dependence of vacancy
concentration. An early method used successfully (Refs. 3 and 4) involved quenching (rapid
cooling) wires of the material being studied from high temperatures (o a temperature at which
the vacancies are immobile, usually below room temperature. The electrical resistivity of the
wires was used as a measure of vacancy concentration. This method allows one to determine
AH,. but not AS,. To determine both requires a measurement of the absolute number of
vacancies at some temperature.



72 Chapter 3/Defects m Solids

the volume of a crystal increases with increasing temperature for two reasons: the
increased thermal vibration of the atoms and the creation of vacancies:

AV = AV,, + AV, (3.11)

The term AV,, refers (o the volume change because of increased thermal vibration
of the atoms. The term AV, refers to the volume change because of the presence of
vacancies. It is equal to the number of vacancies multiplied by the volume change
introduced by the presence of one vacancy, and is written as AV, = n. V. To find
the rate of change of AV, with temperature at constant pressure, we substitute for n
according to Egs. 3.9 and 3.11, and differentiate with respect to temperature:

(O(AV an,V, AH, | AH,
( (’ ‘\,)) - ( (lf\”\)> s N‘,‘V\,A exp | — —=| =
aT /p ar /. kT | kT7
Rearranging:
T2 [ aav, N AH A AH,
= | = =|——]exp |~ 7 3.12)
V. L aT |, -k kT
Taking the natural logarithm of both sides of Eq. 3.12, we have
T2 [9AV, N AH, A AH,
In | — ( ) =In|—— | - — 3.13)
v.\ar /, k kT

'1‘.’
From Eq. 3.13, it is apparent that a graph of In v (

v

AV

——‘) versus /T has a
aT /.

slope of —AH /k.

The value of the term 1/V (aV /0T), was determined by observing the difference
between the change in external dimensions of a crystal A/l and the change in lattice
parameter Aa/a as the temperature of the crystal is changed. In Eq. 3.14, the first
term involving Al is associated with the total volume change of the crystal. The term
involving changes in lattice parameter, Aa/a, is related 1o the change of volume
assochated only with the increased vibrations ol atoms. The difference between the
two is the change in volume introduced by the formation of vacancies. Because the
volume is a cubic function of a linear dimension of the crystal, the AV,/V term is
three times the fractional linear changes.

—L (g - f) (3.14)
1% R a 3

From these experiments Simmons and Balluffi inferred the enthalpies and entro-
pies of formation of vacancies in aluminum, gold, and silver (Table 3.1). Based on
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Table 3.1 Enthalpies and Entropies of Formation of Vacancies in Aluminum,
Gold, and Silver

AH, (eV) AS /k An/n (at melting point)
_ =
Aluminum 0.75 2.2 9 X 107
Gold 0.94 1.0 72 x10°
Silver 1.09 1.5 2 X 10

Source: Refs. 1 and 2.

their values, the calculated fraction of vacant lattice sites (An/n) at the melting point
of these metals, also in Table 3.1, is shown to be almost one in a thousand. Let us
use the values for silver to calculate the fraction of vacant sites at 700 K. The
enthalpy and entropy values from Table 3.1 are AH, = 1.09 EV and ASJk = 1.5.

n* 'L\§v> ( AHV>
wt o (ASN (A
N P ( v )P

n*

— = exp(1.5) exp (

It

X 1077

|

-1.09 \ = 4
N (8.617 X 10’5)(700))

The fraction of vacant lattice sites is thus about 64 parts per billion. The concen-
tration of vacancies is the fraction of vacant sites multiplied by the number of lattice
sites per unit volume, N,/V. For silver, this calculation yields about 3.75 X 10
vacancies per cubic centimeter at 700 K. '

33 INTERACTIONS BETWEEN VACANCIES AND IMPURITIES

We have established that vacancies exist at equilibrium in pure, elemental crystals
above absolute zero of temperature. The concentration of these intrinsic vacancies
can be calculated using Eq. 3.8, if the energies and entropies of formation are known.
The presence of dissolved impurity atoms in the crystal may influence the intrinsic
vacancy concentration because the impurity atoms and the solvent atoms differ in
size, causing vacancies to be attracted to the impurity atoms. The total concentration
of vacancics would thus be modified. »

To analyze this situation using statistical thermodynamics, consider that a vacancy
can exist in two stable states, either bound to an impurity atom (extrinsic) or unbound
(intrinsic). The total concentration of vacancies n, is the sum of the two:

n, = n¥ + n-, (3.15)
where n, is total vacancy concentration (vacancies per unit volume), n* is intrinsic

vacancy concentration, and n,-, is bound vacancy concentration.
The energy state of a vacancy depends on whether it is bound or unbound. Let
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us designate the energy of an unbound vacancy as E, and the energy of a bound
vacancy as E,.. We may, for the purpose of this analysis, assign a value of zero to
the unbound energy: E, = 0. The value of E, , will be inherently negative because
itis a binding energy; that is, an energy input will be required to separate the vacancy
from the impurity to create an unbound vacancy. Based on Eq. 2.7, the ratio of
bound to unbound vacancies is

where Z (the partition function) = g* + g, exp(—E,— /kT).

Moy _ 81—y SXP(—E-JKT) : (3.16)
nt g* + g, exp(—E,_JkT)

- The value of the degeneracy, g,—., is the product of the impurity concentration,
n,, and Z. the coordination number in the crystal, because the vacancy may attach
itself to an impurity at any of the nearest neighbor positions.? The degeneracy of the
unbound vacancies is the number of lattice sites not nearest to impurity atoms.

8- = Zn; gt=N—n —Zn,=N—(Z+

M-y _ Zn, exp(—E,- JkT)

n* N — (Z + Un, + Zn, exp(—E,- JkT)

Note that N >> (Z + 1)n,, and Zn, exp(—E,- /kT) << N for small n;:

i E. _
e, =t 2 Zexp [ — = (3.17)
N KT ‘

Substituting in Eq. 3.15, we write

n

See | 427 Ery (3.18)
= - e - - Je
. I T 4 ( /cT)

To learn how important the extrinsic concentration can be, let us estimate some
of the terms in Eq. 3.18. Let us take silver at 700 K once again as an example. Our
calculation in Section 3.2 tells us that vacancies in silver are present at about 64

“The common notation for the coordination number is usually the letter Z, which we have
used to signify the partition function. To avoid confusion, the notation Z, was used in this
section for the partition function.
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parts per billion at this temperature. It is difficult to reduce impurities in silver (7,)
to this level. A typical impurity fraction is 107%, or 0.1%. At this level, assuming a
reasonable binding energy (E,-, = —0.1 eV), and a coordination number of 12, the
ratio of total vacancies to intrinsic vacancies® is:

n 0.1
L = 4 [07%(12
e s (eXp [(8.617 X 10-‘)(700)] )

I
— = 1.06
*

nk

At a 1% impurity level, this ratio rises to 1.63. This leads us to the conclusion
that impurities can have an effect on vacancy concentration. Based on Eg. 3.18, this
effect becomes even more important at lower temperatures.

3.4 INTERACTION BETWEEN IMPERFECTIONS
AND IMPURITIES

In Section 3.3 we analyzed the effect of dissolved impurity atoms on the equilibrium
concentration of point defects in a crystal, based on the formation of impurity-
vacancy clusters. If there is a tendency for impurity atoms and crystal imperfections
to form clusters, we should expect structural imperfections, such as dislocations,.to
attract and bind impurity atoms in a crystal. An interesting example of this binding
is to be found in iron—carbon (steel) alloys. An accepted explanation for the *‘yield
point™” in steel is based on the binding between dislocations and solutes that occupy
interstitial positions in the iron lattice, such as carbon atoms. Plastic deformation in
a crystalline solid occurs when dislocations move under applied stress. In iron-
carbon alloys, the stress required to start the movement of dislocations is higher than
the stress required to keep them moving, giving rise to a distinct yield point (Ref.
5). The binding between dislocations and carbon atoms causes this phenomenon.
The shear stress required to break the dislocation away from the relatively immobile
carbon atoms is greater than the shear stress required to keep them moving. Based
on reasoning similar to that used to derive Eq. 3.18, there should be fewer atoms
bound to the imperfections as the temperature is increased. Thus, the yield point
phenomenon should become less pronounced at higher temperatures. This is, indeed,
what is observed in the iron—carbon system. At temperatures above 700°C the yield
point essentially disappears.

To deal with the effect of binding of interstitial impurities to dislocations, let us
adopt the same type of notation we used in Section 3.3. We can write:

My 8na exp(—Ey/kT)

: (3.19)
n gt '?Ni exp(—Ey/kT)

*The Boltzmann constant is 8.617 X 107° eV/K.
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where n# = number of intrinsic nitrogen atoms in iron per cubic centimeter

(intrinsic solubility)

ny, = number of nitrogen atoms bound to dislocations

£y = number of lattice positions available to dissolved nitrogen atoms

¢y, = number of dislocation positions avaitable to dissolved nitrogen
atoms

E,, = inleraction energy of dissolved nitrogen and dislocations
relative to dissolved nitrogen in lattice (negative quantity)

Note that we have assigned an energy of zero to the dissolved nitrogen in a normal
position (interstitial). If we can assume that gy >> gy, Eq. 3.19 becomes

My S exp(—E/kT)

G T T T (3.20)
ng 8N
The total number of nitrogen atoms dissolved ny is the sum of n¥ and ny,.
gy exXp(— E /KT)\
ne = nf + ng = ng (1 - < S i ) 3.21)
En

It is apparent from Eq. 3.21 that the measured solubility of nitrogen in iron is a
function of the dislocation concentration if the interaction energy £y, is not zero.
Let us estimate the magnitude of the effect. Interaction energies £y, are about —0.3
eV. If a sample is severely cold-worked (rolled), dislocation densities up to 5 X 10"
cm/cm? can be reached. For iron, the number of interstitial positions per cubic cen-
timeter is 8.4 X 10%2. The number of atoms per centimeter is the cube root of
8.4 X 1072, or 4.3 X 107. Assuming, for simplicity, that we are dealing with edge
dislocations, the number of dislocation positions that can occupy a nitrogen atom is
the product of the dislocation density and 4.3 X 107, or 2.15 X 10*. If we substitute
these values in Eq. 3.21 at 700 K (427°C), the enhancement ol observed solubility
is about 37%. This elfect should be observable, and, in fact, was observed by Darken
(Ref. 5).

Darken conducted his experiments by equilibrating samples of iron with a mixture
of ammonia and hydrogen at about 450°C. By controlling the ratio of ammonia to
hydrogen, he fixed the thermodynamic activity of nitrogen, because the equilibrium
constant K, 1s determined by the temperature:

NH, = 3H, + N

(3.22)
P

= dy
@ N
PNH‘

where underscored N indicates dissolved nitrogen.
The number of dislocations was varied by cold working the samples to diflerent
levels. The greater the degree of cold work, the higher the dislocation concentration.
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Figure 3.4 Nitrogen dissolved in iron as a function of activity
of nitrogen and cold work (imperfections) in iron.

“fter equilibrating the iron samples with the gas of controlled nitrogen activity,
L n found higher nitrogen solubility in samples with greater cold work (i.e., the
~=s with higher dislocation densities). His observations are shown in Figure 3.4.

e
n

ELECTRONIC DEFECTS

Solid materials can, in broad terms, be divided into three classes with respect 1o their
of conduct electrical charges: metals, semiconductors, and insulators. Metals
have a high mobile carrier (electron) concentration, on the order of 10** per cubic
centimeter. At the other end of the scale, insulators have very few mobile charge
carriers—on the order of one per cubic centimeter. The behavior of electrons in
metals is discussed in texts on metal physics (see, €.2., Refs. 6 and 7). The conduc-
tivity of insulators is not discussed because, by the nature of the devices, this property
cannot be varied significantly. Semiconductors are particularly interesting because
their conductivity can be varied by changing the environment in which they exist.

They are, thus, uscful as sensors.

lntrinsic semiconductors are characterized by an cnergy gap (band gap) between
electrons in their valence bands and allowed states in their conduction bands (Figure
3.5). To become active, in the sense of conduction, electrons must jurnp across the
energy gap into the conduction band. When they do, they leave behind holes in the
valence band. Both electrons and holes can participate in the conduction of electrical
charge. Semiconductors can have a range of carrier concentrations, but for compar-
ison with insulators and metals we can think of them as having on the order of 10"
mobile carriers per cubic centimeter. They are useful in electrical devices, such as
{ransistors, or, in the case of ionic solids, as sensors, because the number of carriers
changes with temperature or with the chemical nature of the atmosphere in equilib-
rium with the solid. In this section, we establish the relationship between charge
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Figure 3.5 Plot of density of states g(E)
versus E for conduction electrons and
holes in a semiconductor.

carriers in pure elemental crystals (electrons and holes) as a function of temperature
and energy gap of the solid. A later section treats the effect of atmosphere.

If the two states for electrons, at the top of the valence band and at the bottom
of the conduction band, had no limits as to their occupancy, calculating the proba-
bility of finding an electron at Eg relative to E = 0 (top of the valence band) would
be a straightforward application of Boltzmann statistics (Eq. 2.7). The situation is
more complicated, however, because the Pauli exclusion principle applies. Only one
electron may occupy each quantum state in the crystal, taking all the quantum num-
bers into account, including the spins. We must therefore use the Fermi-Dirac sta-
tistics (Section 2.11). The number of electrons in the conduction band N, is, based
on Eq. 2.25:

w B~ =it
N:J ) [ 1+ e ( > dE 23
: ammb =0 [~ } E (3.23

2

where . is the Fermi level in the crystal, E;, and g(E) is the density of states between
energy levels E and E + dE.

The density of states for the electrons in the conduction band may be derived
using the same technique we used to determine the density of states for an ideal gas,
that is, from the “‘quantum particle in a box”" model. Taking into account the two
spin states that may exist at each energy level, the result for electrons is

2m*\ "
g(E) = dar ( : ‘-) (E — )"
1

S

g(E) = C(E — E)"” (3.24)

where C. = 4m(2m*/h?)¥? and m*is the effective mass of an electron in the crystal.
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For holes in the valence band, a similar approach yields:

2 * 32
2(E) = 4 ( ;l”’) (—E)”

(3.25)
g(E) = C(—E)”?

where m¥ is the effective mass of a “*hole’’ in the valence band.

Because the Fermi level lies in the forbidden band, and its distance from the band
edge is large compared with k7" (which is equal o about 0.025 eV at room temper-
ature), we may approximate the Fermi function as follows:

I+ E- E"') E- EF) (3.26)
T+ ex = eX Ya
p( kT p( KT

because (E — E,) >> kT.
Substituting Eqgs. 3.26 and 3.24 in 3.23 yields:

" . (E-Ep
= I i 117 .
N, C. Lg (E E)" exp [ _kT dE (3.27)
If we let x = (£ — E,)/kT, Eq. 3.27 becomes

E : "
N, = C(kT)"* exp [~ (—Lw} L x'"2e*dx

For the definite integral, we write

hence:

AN E,— E
V=2 (o 25 ) exp [ T (3.28)
\ C

By a similar process, the number of holes present in the valence band is,

32

B mikT\ E;
N, = 2 (211 T exp (~ H) (3.29)

If we are dealing with an intrinsic semiconductor—that is, one in which there is
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it behind for every electron in the conduction band (no donor or acceptor
aritics)—then,?

N =N, (3.30)

Substituting Eqgs. 3.28 and 3.29 in Eq. 3.30:

E, 3 mf
E,.=—=+-kl'ln — (3.31)
2 -4 m

Since k7' is small, and the values of m* and m7 are not greatly different, the Fermi
level may be considered to be in the middle of the energy gap for intrinsic
semiconductors.

If we think of the formation of conduction electrons and holes as a chemical
reaction, we can write:

null = N. + N, (3.32)

The product of N, and N, is a function of temperature, much as the equilibrium
constant is, and has a value:

NN, = 4 (hk 3 ()T exp [ — B (3.33)
= ; Sy )L exp | — .
Yy e ) meny X| k /(T)

[t is interesting to note that the term for the Fermi level, E,, drops out of Eq.
3.33, and the product of N and N, depends only on temperature and the energy gap,
E,. In contrast to a simple, two-energy-level situation in which the Boltzmann dis-
tribution (Eq. 2.7) would apply, the product of the number of electrons and holes is
in this case a function of E/kT, but also a function of T,

3.6 DEFECTS IN IONIC COMPOUNDS

The preceding sections dealt with defects in elemental crystals, where the atoms
were all of the same species. Ionic compounds have a minimum of two elements,
an clectropositive elenient, designated by M, and an clectronegative element, des-
ignated by X. Vacancies may occur on either the electropositive or the clectroneg-
ative lattice. Additionally, both the electropositive and the electronegative elements
may take interstitial positions in the lattice. Each type of defect is discussed in the
sections that follow.

“In muny publications, N, the number of electrons in the conduction band, is written simply
as 7'n.”" The number of holes N, is written as **p,”” referring to a positively charged conduction

Species.



Symbol

M Atom of electropositive element

X Atom of electronegative element

My, M atom on M site (sometimes denoted as My,

Ny N atom on M site

Vi Vacancy on M site

M, M atom on interstitial site

M; Positively charged M ion on interstitial site (singly ionized)

M7 Positively charged M ion on interstitial site (doubly ionized)

V! Negatively charged X ion on interstitial site (singly ionized)
Vi Positively charged vacancy (relative to perfect Jattice) on X site
Vi Negatively charged vacancy (relative to perfect lattice) on M site

Source: Rel. 8.

For the purposes of our discussion, we will adopt the Kroger—Vink notation (Ref.

8) to represent these imperfections (Table 3.2). An easy way (Ref. 9) t0 understand

the notation is to consider that each point defectis represented by a three-part symbol,

X%, where

X represents what is on the site (V for a vacancy and an elemental notation if the
site is occupied by an element)

Y represents the 1ype of site occupied by X (1 for an interstitial site, or, for a lattice
site, the symbol for the element usually occupying that lattice site)

7 represents the charge relative 10 the normal ionic charge on the site Y [positive
charges are represented by dots ( or ”, and negative charges by primes (Cor");a
lowercase letter x is sometimes used to denote a neutral atom].

In silver chloride, AgCl, an interstitial silver ion is represented as Ag. A vacancy
on the silver lattice is represented as Ve

Equations describing defect formation or annihilation must adhere to the follow-
ing principles:

1. Conservation of mass

2. Conservation of charge (elcclroneulrality)
3. A fixed ratio of M and X sites according to the compound being studied

3.7 FRENKEL DEFECTS

One type of defect in an ionic solid is formed when an ion normally found on one
of the lattice positions lies in an interstitial position in the structure, and a lattice
position corresponding to that element is vacant. This is called a Frenkel defect. The
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formation of a Frenkel defect by an electropositive element (M) may be expressed
as a chemical equation:

MX = M, -5X + 3V, + M, (3.34)
In the Kroger—Vink notation, which we will use, this is written as follows:
M, = M; + V§ (3.35)

We have assumed that the interstitial M atom is ionized with a charge of 4 1. The
vacancy has a charge of —1 relative to the perfect lattice. If we think of the change
expressed in Eq. 3.35 as a chemical reaction, we can write an equilibrium constant
for it:

K, = v (3.36)

Ay,

The activity of the material M (ay,,) is very close (o unity because only small
quantities of defects are formed. Using the infinitely dilute solution as the standard
state for the imperfections makes their activities equal to their concentrations™

K, = M1Vl 3.37)

To describe the concentration of these imperfections as a function of temperature,
we follow the same procedure we used for elemental crystals, with the complication
that we must account for the configurational entropy (AS,) of both the vacancies and
the interstitials. There is uncertainty concerning the position of the vacancies and
also uncertainty related to the position of the interstitials. If we assume that the
locations of the vacancies and the interstitials are random and independent of one
another, we can write

(N + n)! (N + n)!
AS, = & [(N n)! (N + n) }

Nin! Nin!

where 1, = number of vacancies
number of interstitials

I

n

i

Proceeding as in Section 3.1, we obtain:

) () o () o (- 2)
N + n, N + n 76Xp(k exp kT) o

5Square brackets [ ] denote the concentration of the species in the brackets.
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but
2 ,l\/ . 1
n. << N; n, << N, [Vl = = M] ==

\

For one mole of crystal:

P AS, AH
[ValIM] = Y/Z\ exp (#*‘) exp <~ TTJ> (3.40)

The Frenkel defect concentration, [F] is equal to the concentration of either the
interstitials | X,] or the vacancies [V], if the two are equal, or to the square root of
their product:

iy Yy - . _ AH,
[FI = (AVAIIMD" *—fexp<2k)exp( ) (3.41)

This term, [F]. is called the intrinsic Frenkel defect concentration and is related
to the entropy and enthalpy of formation of the defect.

The preceding illustration was based on Frenkel defect formation by the electro-
positive (M) elements. The same can also occur for the electronegative (X) elements.

3.8 SCHOTTKY-WAGNER DEFECTS
A defect in an ionic crystal may be created by having an electrical-charge-equivalent
number of vacancies created on the electropositive and electronegative lattices. If
the electropositive and electronegative elements have the same valence, there will
be the same number of vacancies on each lattice. If the valence of the two elements
is different, the number of vacancies is inversely proportional to their valence states.
In the case of similar valence this can be expressed as a chemical equation as follows
(the term “‘null”’ represents the defect-free lattice):

null = Vi + V), (3.42)
In terms of an equilibrium constant, this can be written as follows:

K, = [ViIIVil (3.43)

Note that the term [M,,] appears both in Egs. 3.37 and 3.43. Both Frenkel and
Schottky—Wagner defects may be present in the same crystal. Chemical equilibrium
requires that both equilibria be satisfied in addition to the condition of stoichiometry.
which in this case corresponds to electroneutrality among the charged species.
Because of these conditions, we may write:
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[Val = [M]] + [Vi] (3.44)
M] = o Vil = o

Cooval T vl

[Val* = K, + K, (3.45)

Thus the concentration of vacancies on the electropositive lattice depends on the
presence of both Frenkel and Schottky—Wagner defects.

3.9 INTERACTIONS AMONG DEFECTS

In Section 3.7 we demonstrated that the concentrations of Frenkel and Schottky—
Wagner defects are interdependent. This interdependence of defect concentrations
also holds for a wide variety of other defects. In this section we discuss a useful way
of representing these relationships in diagrammatic form. In the literature of the field,
the diagrams are called either Brouwer diagrams or Kroger-Vink diagrams (Refs. 8
and 10).

Tuke as an example the case of an ionic solid, represented as MX, which is
exposed to the vapor of the metal M at various pressures. Let us assume that the
metal vapor interacts with the MX crystal to form interstitial ions and electrons,
which we will label n':

M(g) = M; + n’
The equilibrium among the species in the reaction is represented by

_ V)

K - 3.46
i P, ) ( )

We note that there are also charged vacancies on the M sublattice, and we must
accommodate to the Frenkel defect equilibrium:

Ky = MVl (3.47)
In addition, there is an equilibrium between free electrons (n') and holes (p):
K = [0'][p] (3.48)
Electroneutrality of the crystal imposes the following condition:

(0] + [Val = [p] + [M] (3.49)

a
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If we take the natural logarithms of the terms in Eqs. 3.46, 3.47, and 3.48, we
obtain:

In K. = In[M]] + In[n'] — In Py, (3.50)
In K, = In[M;] + In[V] (3.51)
In K, = Infn'] + In[p] (3.52)

The construction of a Brouwer (or Kroger-Vink) diagram proceeds by noting that
certain approximations may be made in different ranges of metal vapor pressure
values. For example, in a low metal pressure range we may dassume that the concen-
trations of interstitial cations and holes predominate. Based on the condition of elec-
ironeutrality (Eq. 3.49) the concentrations of the two are equal:

Pl = [Vl = (3.53)

As the pressure in the metal vapor increases, we enter a region of stoichiometry

in which the concentrations of interstitial cations and negatively charged vacancies
are equal (Frenkel defect):

[Vl = [M] (3.59)

Finally, as the pressure increases, we enter a region where the concentration of
cation interstitials is equal to the concentration of free electrons:

[n'] = (Ml (3.55)

—_—

Logarithm concentration
of species, In [ ]

In KgPy
Figure 3.6 Concentration of charged spe-
cies in MX exposed to M(g) as a function
of metal vapor pressure.
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[p1 =1Vl [Vl = (M]] [l = (M)

of species, In{ |

Logarithm of concentration

In KpPy —>
Figure 3.7 Concentration of various species in MX exposed to
M(g) as a function of metal vapor pressure.

Treating the case represented by Eq. 3.53, we can write Eq. 3.50 as follows:
In Py, = In[M;] + In[n’] — In K, (3.50")
Combining Egs. 3.51 and 3.52 yields:

In (K?{:):ln[M;rln[n’l = e e

Combining the results of Eqs. 3.50" and 3.56 yields:

K.K,
In P, = 2In[M;] — In (—'Ki> (3.57)

i

These relationships are shown schematically in Figure 3.6. Note that on the right-
hand side of Figure 3.6 the concentration of cation interstitials becomes equal to the
concentration of cation vacancies, and we enter the pressure region dominated by
Frenkel defects. A further increase in gaseous metal vapor pressure moves us into
the region dominated by free electrons and cation interstitials. The concentrations
of the various species involved are shown schematically in Figure 3.7.

3.10 INTRINSIC AND EXTRINSIC DEFECTS IN IONIC
CRYSTALS

Vacancies in fonic crystals exist at equilibrium at temperatures above absolute zero,
as demonstrated in the preceding sections. These thermally induced vacancies in
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pure M—X crystals are called intrinsic vacancies. Vacancies may also be induced
by impurity ions whose valence differs from the valence of the ions in the host
crystal. These are called extrinsic vacancies.

Consider the addition of cadmium chloride (CdCl,) to a sodium chloride (NaCl)
crystal. From the chemical equations describing the compounds, it is apparent that
the valence of the cadmium ion in cadmium chloride is +2. The sodium ion in
sodium chloride has a valence of +1. One CdCl, molecule occupies nvo anion
(negative ion) sites, and one cation site. Thus. in a dilute solution of cadmium chlo-
ride in sodium chloride. there must be one sodium ion vacancy on the M lattice for
every cadmium ion added, because electrical neutrality is required (Figure 3.8). This
condition of clectroneutrality can be expressed as follows:

(V4] = [Cdy,] + [Vi] (3.58)

The concentration of vacancies on the sodium ion lattice is equal to the concen-
tration of vacancies in the chlorine lattice plus the concentration of cadmium ions.

From Eq. 3.58 it is clear that if the concentration of cadmium jons is very much
greater than the vacancies of chloride ions ([Cdy.] >> [V, 1), the vacancy in sodium
ion concentrations simply equals the concentration of cadmium ions. In this case,
the concentration of sodium ion vacancies is extrinsic; that is, it is not controlled
by the inherent properties of the sodium chloride. It depends on another condition
(viz., the cadmium ion concentration) and is not related to the intrinsic number of
vacancies produced thermally. If, however, the cadmium ion concentration is very
small ([Vi,] >> [Cdy,1). the concentration of sodium ion vacancies is equal to the
concentration of chloride ion vacancies, and the concentrations are intrinsic—that
is. only thermally induced.

These relationships can be illustrated using the equilibrium relationship for
Schottky defect on the sodium chloride Iattice:

Ks = [V VL] (3.59)
Na Cl Na Cl Na Cl Na Cl
Cl Na Cl Na Cl @ Cl Na
Na Cl Na Cl Na Cl Na Cl
Cl ] Cl Na Cl Na Cl Na
Na Cl Na Cl Na Cl Na Cl
Cl Na Cl Na Cl Na Cl Na

— Sodium ion vacancy, V;,
Figure 3.8 Effect of CdCI, addition (presence of Cdy,) on NaCl crystal.
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Combining Eqgs. 3.59 and 3.58 yields:

Vil = (Gl + 2
= Ay P mm—
VA

or

V&P — GVl — Ky =0
The solution to this equation is:

Cdy,] + (ICdy, ) + 4K)"™”
V] = [Cdyl ({ ;N.‘] )

(3.60)

A sodium chloride crystal with a given concentration of cadmium chloride can
display both intrinsic and extrinsic behavior depending on its temperature. This can
be understood by considering Eq. 3.60. At higher temperatures, the value of the
equilibrium constant K¢ can be much greater than the value of [Cd™|*. If that is true,
then |V, = K% and the thermally generated imperfections will be greater than the
cadmium ion concentration. The crystal will show intrinsic behavior. As the tem-
perature of the crystal drops, the value of K drops; that is, the number of thermally
induced vacancies drops. When Ky is much smaller than |Cdy,)’, we will see
[V.,] = [Cdy,] and extrinsic behavior. This change in behavior with temperature

Intrinsic ' Extrinsic
region region

-~
T

Figure 3.9 Inurinsic and extrinsic vacancy regions.
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is illustrated in Figure 3.9, which plots the natural log of a sodium jon vacancy
against the inverse absolute temperature.

In the intrinsic region, the vacancies in sodium ions are equal to the vacancies in
chloride ions. In the extrinsic region, the equilibrivm expression (from Eq. 3.43)
must still be observed; thus the vacancies in chloride ions will be less than the
quantity calculated for inu’m§ic chloride on concentration as illustrated in Figure
39.

311 EXPERIMENTAL DETERMINATION OF DEFECT TYPE

‘The different defect types in ionic solids discussed sO far should manifest themselves
in physically observable ways. In fact, if the ionic solids are to be used as sensors,
we want to observe a variation of some measurable quantity as a function of tem-
perature, or of the environment in which the solid exists. This section discusses two:
ways of inferring defect type in ionic crystals, one based on the measurement of
Jattice parameters and densities, and the other based on the measurement of electrical
conductivity.

As an example of the use of density and lattice parameter measurements, consider
the case of the addition of calcia (CaO) to zirconia (ZrO,). If 15 mol % calcia is
incorporated in the zirconia lattice, and assuming that the valences of the ions are
unchanged at Ca*", Zr'™, and O°7, electroneutrality among the three ionic species
present yields a composition of Zr, 45Cio.150 185 There are two ways of forming this
crystal. Either vacancies form on the oxygen lattice, or the calcium and/or zirconium
jons enter interstitial positions. 1t is known from X-ray diffraction studies that the
material crystallizes n a fluorite structure with a lattice parameter of 5131 A Let
us calculate the expected densities of the crystal for the two cases. If oxygen ion
vacancies were to form, the unit cell weight would be 452.60/N,, which is the sum
of:

QlS_)S 4 X 40.08

Ca: ———
N,
7 0.85 X 4 X 91.22 452.60
I — ) =
N, N,
) 1.85 X 4 X 16
0
. N,

The volume of the unit cell is the cube of the lattice parameter, OF 135.08 A%, or
135.08 X 10 > cm’, -
The density would be:

452.60

I RT IVI LT YR ET o 557 glem?
p (6.022 X 102)(135.08 X 10-2) glem
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If interstitial calcium and zirconium ions formed, then the weight of the unit cell
would be 489.29/N, which is the sum of:

8 X 16 )
0:
N,
X015 X (2/185) X 4008 | _ 489.29
a: NA NA
. X085 X QI185) X 9122
) NA

The density would be:

B 489.29
(6.022 X 10*)(135.08 X 102"

p = 6.0l g/cm’

The two values 5.57 and 6.01 g/cm® can be easily distinguished by density mea-
surements. In this case, oxide ion vacancies are found to be present in CaO-ZrO,
solutions equilibrated at 1600°C.° This is an especially important conclusion, because
“‘doped’” crystals of zirconia are useful as oxide ion conductors in high temperature
fuel cells and as oxygen pressure sensors when used in electrochemical cells (Vol.
I, section 6.8).

Electrical conductivity measurements also can be used to determine the types of
defect present in ionic crystals. Consider the case of zinc oxide (ZnQO). If zinc oxide
is heated at low oxygen Ipressures, it will become conductive. By Hall effect mea-
surements (Refs. 6 and 7), it can be shown that the conducting species is negatively
charged, and by the magnitude of the conductivity it is assumed that it is electrons
(n") that are the charge carriers. Let us hypothesize that the defect structure is of the
Frenkel type, with zinc ions occupying the interstitial position. The question is
whether an interstitial zinc ion in the sample is singly or doubly charged. If it is
singly charged, then the chemical reaction is:

ZnO = 30, + Zn; + n’ 3.61)
The equilibrium constant for the reaction is:
K = Pg[Zn][n"] (3.62)

Noting that the concentration of zinc ions must equal the concentration of
electrons,

[Zn] = [n'] (3.63)

SFor samples equilibrated at 1800°C there seems to be some ambiguity in the type of defect
present (Ref. 11).
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_then the concentration of electrons, and the conductivity, will be proportional to the
negative one-fourth power of the oxygen pressure, as follows:

[n'] = [Zn]] = K"p; 1 (3.64)

I the interstitial zinc ion is doubly charged, concentration of electrons will be
proportional to the negative one-sixth power of the oxygen pressure.

Zn0 = 30, + Zn7 + 2n’

[Zn7] = 3[n']

Il

== 1 s
[n'] = 4KPy 1"

The conductivity of zinc oxide crystals is found to be proportional to the negative
one-fourth power of the oxygen pressure, hence singly ionized interstitial zinc jons
exist in ZnO.

3.12  NON STOICHIOMETRY

Strongly ionic compounds, such as those containing halides, generally display a fixed
ratio of constituents. Sodium chloride. for example, shows a one-to-one ratio of
cations to anions, cadmium chloride a two-to-one ratio. Many of the compounds
studied in elementary chemistry are of this type. We have demonstrated that through
exposure to different atmospheres, these ratios may be changed somewhat. In fact.
there are compounds in which the ratios vary greatly from the expected stoichio-
metric ratios. A classic example is provided by one of the iron oxides. wustite.
The compound FeQ (wustite) does not exist with a one-to-one cation-to-anion
ratio and actually has a range of compositions (Figure 3.10). The iron-rich limit of
the compound has a composition closer to Fe, ,sO. At 1200°C the oxygen content
of the wustite may be varied by equilibrating samples in atmospheres with effective
oxygen pressures between 107° and 10™'? atm. The departure from stoichiometry
may be due either to the formation of oXygen ion interstitials or to cation vacancies.
The data in Table 3.3 indicate that the nonstoichiometry is due to cation vacancies
because the density of the oxide decreases as the ratio of iron to oxygen decreases.
To maintain clectroneutrality of the compound, two of the Fe' jons must be trans-
formed into Fe'' ions for each of the vacancies formed. In chemical terms. this may
be considered to be a solution of Fe,0, in FeO. Similar nonstoichiometric behavior
is observed in many systems, such as Ni-O. Co-0, and Cu-0O. Not all of the non-
stoichiometry is accounted for by cation vacancies. In the Zr-O and Ti—O systems,
anion vacancies form. As demonstrated in Section 3.10, interstitial cations account
for nonstoichiometry in the Zn-O system. Thus we can conclude that the principle
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Figure 3.10 Phase diagram for Fe~O from 50 to 60 atom % O; condensed system, 0.1 MPa.

Table 3.3 Lattice Parameter and Density of FeO

Composition Lattice Parameters Density (g/cm?*)
Fe,, O 4.282 5613
Fe,,,0 4285 5.624
Fe,.,.0 4292 5.658
Fe, 0,50 4.301 5.728

Source: E. R. Jeue and F. Foote, J. Chem. Phys., 1,29 (1933), quoted in Ref 12.

of fixed ratios of atoms in molecules that simplified many of the considerations in
elementary chemistry does not apply to many solid compounds.
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PROBLEMS

3.1

3.2

34

When Ca0 is dissolved in ZrO,, oxide ion vacancies are created on the zirconia
Jattice. Calculate the fraction of oxide ion sites that will be vacant when one
mole percent of calcium oxide is added to (i.e., dissolved in) the zirconia.
Neglect the intrinsic-oxide ion vacancies.

What is the oxide ion vacancy concentration stated at vacancies per cubic
centimeter? The density of zirconia is about 5.5 glem’.

Silver bromide (AgBr) exhibits Frenkel imperfections. The formation enthalpy

is about 0.60 eV per pair. Assume that the formation entropy is zero.

(a) What fraction of the Ag™ ions are in interstitial sites just below the melting
point of silver bromide?

(b) The Ag* ions ure extremely mobile, permilting the establishment ol equi-
librium even at relatively low temperatures. Assume that a one cubic cen-
timeter sample of an AgBr crystal is cooled slowly enough to maintain
equilibrium. At what lemperature will the crystal contain just one Frenkel
pair?

For AgBr:
Density = 6.47 glem’
Molecular weight = 187.8 g/mol
700 K.

The formation enthalpy of a Schottky defect in NaCl is about 1.87 ¢V.

Melting point =

(a) Plot the fraction of Na* and Cl~ vacancies as a function of the reciprocal
temperature from the melting point, 1074 K, to 300 K. Assume that the
formation entropy of the vacancies is zero.

(b) Repeat part a, assuming that 10 ¢ mole fraction of CaCl, is added 1o the
pure NaCl. Why are the plots in parts a and b different?

Density measurements are often used to determine the type of defects created

when impurities are dissolved in jonic crystals. If one assumes that the disso-

lution of aluminum oxide (AlL,O,) in pure magnesium oxide (MgO) creates
vacancies on the positive ion lattice, calculate the fractional change in the density
of pure MgO when one weight percent of ALO; is added to it.
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Assume that the crystal structure and the lattice parameter of MgO do not

‘change with the addition of the alumina.

5 The energy of formation for vacancies in gold is about 0.9 eV. Assuming that

there is no change in vibrational entropy associated with the formation of a
vacancy. calculate the intrinsic vacancy concentration in gold at 500 and 1000
K.

Silver, when dissolved in gold, exhibits a binding energy of about 0.10 eV
with vacancies. Calculate the total vacancy concentration in gold at 500 and
1000 K. Assume that there is no change in vibrational entropy involved in the
formation of the silver—vacancy complex. The silver concentration is 0.1 mol
percent.

The density of gold is about 19.3 g/cm®.

Magnesium oxide (MgO) is known to form Schottky defects. creating vacancies
on both the cation (Mg) and anion (O) lattices. The energy of formation of a
Schottky defect in MgO is estimated to be about 6 eV. Assume that we can
consider the entropy of formation of the defect to be zero [the preexponential
term. exp(AS/2R) = 1].

(a) Estimate the fraction of Mg sites and O sites vacant at equilibrium at 1300
K.

(b) What is the concentration of Mg vacancies (vacancies per cubic centimeter)
at equilibrium at 1800 K?

(¢) If a sample of MgO with 0.1 mol % of zirconia (ZrO,) is prepared, what
will be the fraction of Mg sites unoccupied at equilibrium at 1800 K7 What
will be the fraction of oxygen sites unoccupied? The substitution of zirco-
nium ions (Zr**) in the lattice results in cation vacancies.

DATA

Density of MgO = about 3.58 g/em’
Atomic weight of Mg = 24.3 g/mol
Atomic weight of oxygen = 16 g/mol

A sample of iron oxide (wustite) has a composition Fe, 0. Its lattice parameter
is found to be 4.301 A.

(a) Calculate the density of the sample (g/cm?), assuming that the nonstoichi-
¥ I g g

ometry of the compound is accounted for by vacancies on the Fe lattice.
(b) Calculate the density of the sample (g/cm?), assuming that the nonstoichi-
ometry of the compound is accounted for by oxygen interstitials.

DATA
Atomic weights

Fe = 55.85 g/mol
O = 16 g/mol

FeO has a ‘“‘rock salt’ crystal structure (fcc) with 4 cations and 4 anions
per unit cell in a perfect (defect-free) crystal.
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3.8 Given the information below. you are asked to estimate the number of neutral

(noncharged) vacancies in pure, metallic silicon at 1200 K.
(a) What fraction ol the silicon sites are vacant at 1200 K (at equilibrium)?
(b) What is the concentration of these vacancies (per cubic centimeter)?
DATA
AH, = 2.4 ¢V per vacancy
exp(+AS,/k) = 3.0 for the vacancy
Atomic weight of silicon = 28 g/cm?
Density of silicon = 2.42 g/em?

3.9 The accompanying graph shows the self-diffusion coefficient for Na* in an NaCl
crystal doped with CdCl,. NaCl is believed to form Schottky defects. Using the
data in the graph, calculate the following.

(a) The activation energy for self-diffusion of Na' in NaCL
(b) The enthalpy of formation of Schottky defects in NaCl (in eV).
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