POROZNI MATERIJALI Teksturalne osobine

200nm

Silica

Carbon

Zeolite

Važne osobine poroznih sistema su:

- Površina određuje se BET-metodom
- Struktura pora
- Hemijski sastav površine

Tehnike kojima se ispituje sastav površine:

- IR i Raman
- X-ray fluorescentna (XRF)
- Difrakcija elektrona niske energije (LEED)
- X-ray fotoelektronska spektroskopija (ESCA)
- Ožeova elektronska spektroskopija (AES)

Tekstura i morfologija poroznih sistema

- -Veličina pora
- -Oblik pora
- Distribucija pora po veličini
- -Zapremina pora
- Specifična površina adsorbenta

Pore se formiraju u procesu sinteze datog materijala. Pore su dostupne željenom adsorbatu onda kada su prazne što se postiže aktiviranjem, najčešće zagrevanjem na određenoj temperaturi i u vakuumu.

Veličina i oblik pora

micropore

Dijametar pora

- mikropore (< 2 nm)
- mezopore (2 50 nm)
- makropore (> 50 nm)

Aktivni ugalj se sastoji od:

1.Mikro pora radijusa manjeg od 1 nm

2.Mezo pora radijusa 1-25 nm

3. Makropora radiusa većeg od 25 nm

Velike pore služe da transportuju adsorbat u mezo- i mikro- pore.

Fig.2 Coconut carbon

SILICATE / ALUMINOSILICATE POROUS MATERIALS

SILICALITE

Cavilink polimer SEM

Kuglica Cavilink polimera

AFM imidž nanoporoznog aluminijumtrioksida, tamne površine pore prečnika s ~50nm)

Presek kuglice Cavilink polimera, čestice međusobno povezane

Cavilink polimer sa potpuno otvorenom površinom – interkonekcija pora, kavezi imaju dijametar veći od 10,000 Å.

SEM mikrografija tamne površine pore aluminujumoksida prečnika ~25nm)

Definicije svojstava poroznih materijala

 Porozni materijal 	materijal sa kavezima i kanalima koji su dubilji nego širi
 Otvor pore 	kavez ili kanal sa otvorom na
	površini
 Povezujuće pore 	pore koje koje su međusobno
	povezane-adsorbat ostvaruje
	komunikaciju između njih
•Slepa pora (mrtva)	Pora koja se nalazi na površini i nije
	povezana sa drugim porama
 Zatvorena pora 	Kavez koji nije povezan sa
	površinom
•Void	Prazan prostor između čestica
 Mikropora 	Pora manje od 2 nm
 Mezopora 	Pora veličine između 2 i 50 nm
 Makropora 	Pora veličine veće od 50 nm

•	Veličina pore	Širina pore (dijametar cilindrične pore, ili rastojanje između zidova
•	Zapremina pore	Zapremina određena datom metodom
•	Poroznost	Odnos ukupne zapremine pora i prividne gustine čvrste supstance
•	Totalna poroznost	Odnos zapremine praznog prostora između čestica i pora (otvorenih i zatvorenih) i zapremine koju zauzima čvrsta faza
•	Otvorena poroznost	Odnos zapremine slobodnog prostora između čestica i otvorenih pora i zapremine koju zauzima čvrsta faza
•	Površina	Ukupna površina određena nekom metodom pri određenim uslovima
•	Spoljašnja površina	Spoljašnja površina koja ne obuhvata površinu pora
•	Unutrašnja površina	Površina zidova pora
•	Gustina	Gustina čvrste faze, koja ne obuhvata pore i slobodne prostore
•	Prividna gustina	Gustina materijala koja uključuje zatvorene i dostupne pore, određena datim metodom

Poroznost se najčešće definiše kao odnos zapremine pora i zapremine koju zauzima čvrsta faza. Poroznost čine kavezi i kanali koji imaju veću dubinu nego širinu.

U mnogim slučajevima **unutrašnja površina** je mnogo veća od **spoljašnje površine**.

Dostupnost pore

A- zatvorena pora b,c,d,f otvorena pora b,f slepa pora e spoj pora **Oblici pora** c- cilindrična f-cilindrična slepa d-pora oblika dimnjaka g-hrapavost površine

Oblici pora _____ Cilindar Procep -slit b а Boca Klin, oluk d С

Figure 6. Schematic pore images of activated carbon fiber and activated carbon.

Figure 5. Schematic shapes of pores in activated carbon.

Ink-bottle

Veličina pora i difiuzioni režim

Zašto je ovo važno?

Veličina pora određuje difuzione procese kroz materijal.

• Knudsenov broj : $K_n = \lambda/d$

 λ = dužina srednjeg slobodnog puta molekula d= karakterističan dijametar pore $K_n << 1$ bulk difuzija $K_n >> 1$ Knudsen-ov difizija $\begin{array}{c|c} & & & \\ \hline \end{array}$

Cilindrična pora

Tipovi adsorpcionih izotermi

p pritisak gasa, p_0 je napon pare na datoj temperaturi, odnosno napon pare na temperaturi ključanja 1 atm na 77 K za N_2

Langmuirova Adsorptiona Isoterma (Tip I)

Izoterma tipa I. Mikroporozni materijal sa malom spoljašnjom površinom, količina adsorbovane supstance je limitirana, dostiže se saturacija na vrlo niskoj vrednosti p/p⁰ adsorbent i adsorbat interaguju u maloj pori, molekulskih dimenzija.

pretpostavke:

- homogena površina (svi adsorpcioni centri su energetski identični)
- monomolekulska asorpcija
- adsorbat ima osobine idealnog gasa
- adsorbovani molekuli zauzimaju fiksne centre
- nema interakcije između adsorbovanih molekula
- toplota adsorpcije ne zavisi od stepena pokrivenosti.

Izoterme tipa II i IV

 p/p^0

 p/p^0

2

 $n_{\rm ad}$

IVb

Multislojna adsorpcija (početak u B)

Karakteristična za nanoporozne materijale i makroporozne materijale, debljina sloja raste bez ograničenja

Kondenzacija u porama

Slična sa tipom II pri malim pritiscima

Kondenzacija pri velikim pritiscima

Karakteristična za mezoporozne materijale Adsorpcione osobine određuje interakcija između adsorbenta i adsorbata u kondenzovanoj fazi . Gas se kondenzuje na pritisku manjem pod p₀

Histerezus počinje u slučaju adsorpcije N₂ na sloju debljine 4 nm

Mezoporozni materijal koji ima pore manje širine ima kompletno reverzibilnu desorpcionu granu, cilindrične zatvorene pore ili kupaste pore

Izoterme tipa III i V

Stroge kohezione sile između adsorbovanih molekula Nema karakterističnog monosloja, interakcija adsorbentadsorbat je veoma slaba, molekuli adsorbata grade klastere na površini nano- i makroporoznih materijala

Vrlo slična kao tip III na malim pritiscima Relativno slaba interakcija adsorbent-adsorbat Kondenzacija na visokim pritiscima *p Na visokim pritiscima molekuli adsorbata grade klastere ispunjavajući pore Ovaj tip se javlja pri adsorpciji vode na hidrofobnim mikroporoznim i mezoporoznim adsorbentima*

Reprezentuje sloj po sloj adsorpcije na energetski neuniformnoj površini i plato svakog sloja određuje kapacitet datog adsorpcionog centra Primer je adsorpcija Ar, Kr na niskim temperaturama na grafitizovanom aktivnom uglju

Histerezisne petlje

Informacije o obliku pora

Histerezisne petlje su karakteristične za višeslojnu adsorpciju, generalno su povezane sa kapilarnom kondenzacijom, zavise od oblika pora, njihove povezanosti i različitih načina na koji pore mogu da budu blokirane

Svojstva adsorbata koji se koriste u fizisorpcionim merenjima

Adsorbate	Boiling Point (K)	$A_{\rm m}$ (nm ² /molecule)
N_2	77.3	0.162
Ar	87.4	0.142
CO_2	194.5	0.17
Kr	120.8	0.152

Dijametri pora i tehnike meranja

- Eksperimentalne tehnike
 - Kapilarna kondenzacija
 - Utiskivanje žive Hg intrusion
 - Mikroskopija

Adsorpcione izoterme

- 1. Volumerijski metod
- 2. Gravimetrijski metod

p pritisak gasa p° napon pare na datoj temperaturi

Zapreminska adsorpciona merenja

- 1. Precizno merenje pritiska
- 2. Visoki vakuum
- 3. Precizna kalibracija sistema
- Održavanje temperature na temperaturi ključanja gasa sa kojim se meri adsorpcija

BET ADSORPCIONA IZOTERMA Pretpostavke:

- •Na svaki sloj se primenjuje se Langmirov model adsorpcije.
- •Entalpija adsorpcije, ΔH_{ads} za prvi sloj ima vrednost za interakciju adsorbent-adsorbat, a za svaki naredni sloj se uzima entalpija isparavanja ΔH_{vap} .
- •isparavanje (ili desorpcija) se odvija sa eksponirane površine .
- •Brzina isparavanja je jednaka sa brzinom kondenzacije datog sloja.

za svaki

$$\sum \theta_{i} = 1 \qquad h_{ad} = h_{m}(\theta_{0} + 2\theta_{1} + 3\theta_{2} + \theta_{1})$$
Langmuir-ov model
za svaki sloj
$$1^{st} \text{ layer} \qquad k_{a}^{0}\theta_{0}p = k_{d}^{1}\theta_{1} \qquad \theta_{1} = \frac{k_{a}^{0}}{k_{d}^{1}}p\theta_{0} = K_{1}p\theta_{0}$$

$$\kappa_{1} = K_{1,0}e^{-\frac{\Delta H_{ads}}{RT}} \qquad n^{th} \text{ layer} \qquad k_{a}^{n-1}\theta_{n-1}p = k_{d}^{n}\theta_{n} \qquad \theta_{n} = \frac{k_{a}^{0}}{k_{d}^{1}}p\theta_{n-1} = K_{n}p\theta_{n-1}$$

$$K_{\rm n} = K_{\rm n,0} {\rm e}^{-\frac{\Delta H_{\rm n}}{RT}} \approx K_{\rm n,0} {\rm e}^{-\frac{\Delta H_{\rm cond}}{RT}}$$

BET (Brunauer, Emmett, Teller) Metod

Modifikacija Langmirove izoterme

BET izoterma:

- Monoslojna i multislojna adsorpcija
- Slojevi adsorbovanih molekula se razlikuju po:
 - Prvi sloj se adsorbuje sa entalpijom adsorpcije $\Delta H_{ad,1}$
 - Drugi i sledeći slojevi se adsorbuju sa $H_{ad,2} = \Delta H_{cond}$

- BET jednačina ne fituje sve tipove adsorpcionih izotermi
 - Različiti mehanizmi igraju različitu ulogu pri niskim i visokim p

BET jednačina

p pritisak gasa p^o napon pare V_m zapremina monomolekulskog sloja V je merena zapremina adsorbovanog gasa

$$\frac{V}{V_{m}} = \frac{CX}{(1-x)[1+(c-1)x]}$$
$$\frac{x}{V(1-x)} = \frac{1}{cV_{m}} + \frac{(c-1)x}{cV_{m}},$$
$$x = p / p_{o}$$

1: Crta se x / [V(1-x)] su f-ji od x

2: odrediti iz linernog dela grafika

odsečak 1 / (cV_m)

nagib (c-1) / (cV_m)

3: izračunati c, V_m

V_m = 1/ (nagib + odsečak)

V_m se koristi za određivanje specifične površine.

Specifična površina & Monomolekularna adsorpcija

Porozna silika i alumina

Nizak p/p_0 :

- ispunjavaju se mikropore
- favorizovano je popunjavanje najaktivnijih centara (heterogenost)

Visok *p*/*p*₀:

kapilarna kondenzacija

Opseg 0.05 < p/p_0 < 0.3 se koristi za određivanje S_{BET}

t-metod

- BET
 - Važi samo u intervalu malih pritisaka only
 - Interpretacija nije laka
- Debljina (t) adsorbovanog sloja se izračunava

- Grafik *t* u funkciji *p* za neporozne materijale ima vrednost površine
- *t*-grafik pomaže u interpretaciji rezultata

$$S_{t} = n_{m} \cdot A_{m} \cdot N$$

$$\Rightarrow S_{t} = \frac{n_{ad}}{t} \cdot 0.354 \cdot 10^{-9} \cdot A_{m} \cdot N$$

$$\Rightarrow S_{t} = 5.73 \cdot 10^{-6} \cdot \frac{n_{ad}}{t}$$

Oblik t-grafika

t-krive

Interpretacija t-krive

 γ -alumina

Zapremina mikropora

Adsorpciona izoterma tipa I ima horizontalni plato i daje kapacitet za adsorpciju u mikroporama n_p odakle se može izračunati zapremina mikropora V_p uz pretpostavku da se pore popunjavaju kondenzujući gas do normalnog tečnog stanja. (Gurivič, ref u IUPAC Tec. Rep).

Drugi veoma često korišćen metod je Dubinin Raduškevič jednačina.

Dubinin-Radushkevich jednačina: $V = V_o \exp(-b\varepsilon^2)$

 $V_{\rm o}$ je zapremina pora a V, zapremina zauzeta pri datoj vrednosti p_/p.

Gde \mathcal{E}_x predstavlja rad uložen da se savlada sila kojom adsorbent drži molekule adsorbata i da se molekul adsorbata nađe na rastojanju l od površine.

$$\varepsilon_x = RT \ln \frac{p_o}{p}$$

$$\ln V = \ln V_o - \left(\frac{RT}{E}\right)^2 \ln\left(\frac{p_o}{p}\right)$$

Raspodela veličine pora

Kelvinova jednačina za azot

Model

Kanali sa cilindričnim porama V_L = 34.68.10⁻⁶ m³/mol molarna zapremina

γ= 8.88 mN/m površinski napon

r radijus površine

Raspodela veličine pora γ–alumina

$$t = \frac{n_{\rm ad}}{n_{\rm m}} \cdot 0.354$$
 nm

N₂ Adsorpciona izoterma na ZSM-5 zeolitu

Jaka adsorpcija pri niskom *p* zbog kondenzacije u mikroporama Pri višim *p* dolazi do saturacije zbog konačne zapremine mikro pora

t-kriva fizisorpcije N₂ na ZSM-5 zeolitu

Živina porozimetrija

 Hg ne kvasi površine; potreban pritisak da bi se živa utisnula u pore

$$d_{\rm p} = \frac{14860}{p}$$
 (*d u* nm, *p* u bar-ima)

Odgovarajući metod da se odredi zapremina i veličina pora

Hg porozimetrija na γ-alumini

Razlike između S_{Hg} i S_{BET} za mikroporozne materijale

- Hg ne može da prodre u male mikro pore, N₂ može
- Nepouzdane vrednosti kontaktnog ugla i vrednosti površinskog napona

Material	Mean $d_{\rm p}$ (nm)	$S_{\rm BET} ({ m m}^2/{ m g})$			
Catalyst supports					
Silica gel	10	200			
	6	400			
	4	800			
γ -Al ₂ O ₃	10	150			
	5	500			
Zeolite	0.6-2	400-800			
Activated carbon	2	700-1200			
TiO ₂	400-800	2-50			
Aerosil SiO ₂	-	50-200			
Catalysts					
MeOH synthesis (Cu/ZnO/Al ₂ O ₃)	20	80			
NH ₃ synthesis (Fe/Al ₂ O ₃ /K ₂ O)	100	10			
Reforming (Pt/Re/Al ₂ O ₃)	5	250			
Epoxidation $(Ag/\alpha - Al_2O_3)$	200	0.5			

Teksturalna svojstva komercijalnih katalizatora

 $S_{\rm Hg}$ i $S_{\rm BET}$

Adsorbent	$S_{ m Hg}$	$S_{ m BET}$	θ
	m^2/g	m^2/g	deg
Iron Oxide	14.3	13.3	130
Tungsten Oxide	0.11	0.10	130
Anatase	15.1	10.3	130
Hydroxy Apatite	55.2	55.0	130
Carbon Black (Spheron-6)	107.8	110.0	130
0.5 % Ru/γ-Al ₂ O ₃	237.0	229.0	140
0.5 % Pd/ γ -Al ₂ O ₃	115.0	112.0	140
TiO ₂ Powder	31.0	25.0	140
Sintered Silica Pellets	20.5	5.0	140
Zeolite H-ZSM-5	39.0	375.0	140
Norit Active Carbon R1 Extra	112.0	915.0	140

Teksturalna svojstva

		N ₂ -physisorption			Hg-porosimetry			
	$S_{ m BET}$	S_t	$V_{ m p}$	$d_{ m p}$	$S_{ m Hg}$	$V_{ m p}$	$d_{ m p}$	
	m^2/g	m²/g	ml/g	nm	m^2/g	ml/g	nm	
Wide Pore Silica	78	52	0.91	47	80	0.92	54	-
γ-Alumina	196	202	0.49	10	163	0.49	10	
α-Alumina	9	8	0.12	112	12	0.48	150	
Active Carbon	1057 ^a	28	0.51	2	0.6	0.46	106	
Raney Ni	76	-	0.14	5.80	-	-	-	
ZSM-5	345	344	0.19	0.58	11	1.1	820 ^b	

^a p/p_0 range of 0.01-0.1 was used in the calculation.

^b intraparticle voids.

N₂ adsorpcione izoterme & raspodela veličine

N₂ adsorpcione izoterme & raspodela veličine pora

u pore

N₂ adsorpcione izoterme & raspodela veličine pora

Hg porozimetrija & raspodela veličine pora

Hg porozimetrija & raspodela veličine pora

Hg porozimetrija & raspodela veličine pora

BET- & t-krive

BET- & t-krive

BET- & t-krive

Gas Purification

H2O/olefin-containing cracked gas, natural gas, air, synthesis gas, etc. CO2/C2H4, natural gas, etc.

Hydrocarbons, halogenated organics, solvents/vent streams

Sulfur compounds/natural gas, hydrogen, liquefied petroleum gas (LPG), etc. SO2/vent streams Odors/air

Indoor air pollutants—VOCs

Tank-vent emissions/air or nitrogen Hg/chlor-alkali cell gas effluent Silica, alumina, zeolite (3A) Zeolite, carbon molecular sieve

Activated carbon, silicalite, others

Zeolite, activated alumina

Zeolite, activated carbon

Silicalite, others

Activated carbon, silicalite, resins

Activated carbon, silicalite

Zeolite

Liquid Purifications

H2/organics, oxygenated organics, halogenated organics, etc., dehydration Silica, alumina, zeolite, corn grits Organics, halogenated organics, oxygenated organics, etc./H2O—water purification Activated carbon, silicalite, resins Inorganics (As, Cd, Cr, Cu, Se, Pb, F,Cl, radionuclides, etc.)/H2O—waterpurification Activated carbon Odor and taste bodies/H2O Activated carbon Sulfur compounds/organics Zeolite, alumina, others Decolorizing petroleum fractions, syrups, vegetable oils, etc. Activated carbon Various fermentation products/fermentor effluent Activated carbon, affinity agents Drug detoxification in the body Activated carbon

Liquid Bulk Separations

Normal paraffins/isoparaffins, aromatics	Zeolite
<i>p</i> -xylene/ <i>o</i> -xylene, <i>m</i> -xylene	Zeolite
Detergent-range olefins/paraffins	Zeolite
<i>p</i> -Diethyl benzene/isomer mixture	Zeolite
Fructose/glucose	Zeolite
Chromatographic analytical separations	Wide range of

Wide range of inorganic, polymer, and affinity agents

OBAVEŠTENJE

Mole se studenti da se do petka jave na:

maja@ffh.bg.ac.rs

da bi dobili dodatni materijal i zadatak