

Metode zasnovane na sinhrotronskom zracenju (Difrakcione metode)

Ivana Radosavljevic Evans Durham University, UK ivana.radosavljevic@durham.ac.uk

Metode zasnovane na sinhrotronskom zracenju (Difrakcione metode)

Plan predavanja:

- Difrakcione metode strukturne karakterizacije materijala
- Eksperimentalni aspekti difrakcije sinhrotronskog X-zracenja
- Oblasti primene difrakcije sinhrotronskog X-zracenja
- Prednosti (i mane) u odnosu na laboratorijski XRD
- Primeri studija neorganskih funkcionalnih materijala
- Preporuceni prag znanja:
 - Osnovne kristalografske definicije
 - Kristalografska simetrija, prostorne grupe
 - Difrakcija kao fizicka pojava
 - Bragg-ov zakon
 - Rasejanje sa jedinicne celije: strukturni faktor

Why Study Structures of Solids?

Proof of molecular structure

- Quick analytical tool for the synthetic chemist
 - □ What molecule have I made?
- Determination of crystal structure
 - Task for the crystallographer
 - How are the atoms/molecules in this solid arranged in 3D?

Insight into structure-property relationships

- Key characterisation method for the materials chemist
 - □ Why is my material an ionic conductor?
 - □ Why does my material exhibit negative thermal expansion?
 - □ How can I make a better superconductor?

Structure Determination: Typical Output

> Table of determined (refined) structural parameters

From these parameters, conclusions about the atomic connectivity and coordination environments (bond lengths and angles) can be drawn

Diffraction Patterns

Experimentally observed diffraction patterns

Single crystal diffraction

Powder diffraction

2θ (°)

Crystalline materials = long-range 3D periodic atomic arrays

Interatomic distances ~ 0.5 – 2.5 Å

Waves of comparable wavelengths will be diffracted

- X-rays = EM radiation, $\lambda \sim 0.1 100$ Å
- Neutrons χ_{λ}

$$\lambda = h / mv$$

Electrons

X-rays, neutrons and electrons are diffracted by crystals

X-ray, neutron and electron diffraction patterns contain information about 3D arrangement of atoms in crystals

Information in a Powder Pattern

Information in a Powder Pattern

> 1D periodic array of atoms (unit cell parameter a)

Constructive interference: (AB – CD) = a(cos α_n – cos α_o)= h λ

2D periodic array of atoms (unit cell parameters a, b)
 Maxima in two directions

incident beam

Constructive interference:

a(cos α_n – cos α_o)= h λ b(cos β_n – cos β_o)= k λ

Laue

uations

- > 3D periodic array of atoms (unit cell parameters a, b, c)
- Maximum in one direction

Constructive interference:

$$a(\cos \alpha_n - \cos \alpha_o) = h\lambda$$

 $b(\cos \beta_n - \cos \beta_o) = k\lambda$
 $c(\cos \gamma_n - \cos \gamma_o) = l\lambda$

Bragg's Law

Simplistic, but useful view of diffraction

- Atoms arranged in parallel planes in a crystal
- Incident X-rays reflected off the planes
- Peaks in diffraction patterns referred to as "reflections"

*n=1, because nth order diffraction from (hkl) planes with spacing d can be treated as 1st order diffraction from (nh, nk, nl) planes with spacing d/n

d-spacings and Cell Parameters

d-spacings in crystals are related to the unit cell parameters a, b and c

> For orthogonal crystal systems:

$$\frac{1}{d_{hkl}^{2}} = \frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} + \frac{l^{2}}{c^{2}}$$

> Applications:

- From known unit cell parameters, we can predict diffraction patterns (peak positions)
- From experimentally observed peak positions, we can determine unit cell parameters

Scattering of X-rays by Atoms

X-rays are scattered by electrons •

 $f = \frac{\text{amplitude of the wave scattered by an atom}}{\text{amplitude of the wave scattered by one electron}}$

- Thomson (elastic) scattering •
- The atomic scattering factor f = Z for any • atom in the forward direction $(2\theta = 0)$:
- As θ increases f decreases \rightarrow functional ۲ dependence of the decrease depends on the details of the distribution of electrons around an atom
- f is calculated using quantum mechanics •

Scattering of X-rays by the Unit Cell

- > Peak intensities, $I_{hkl} = I_{hkl} \propto |F_{hkl}|^2$
 - $|F_{hkl}|$ ~ the collective scattering power of the atoms in the unit cell
 - Other factors: absorption, thermal vibrations, site occupancies, ... •
- \succ Structure factor, F_{hkl}

$$F_{hkl} = \sum_{1}^{N} f_n e^{2\pi i (hx_n + ky_n + lz_n)}$$

Electronic property of the atom
Information about atom types Structural property of the unit cell
Information about atom types

cell

>
$$F_{hkl}$$
 is a complex number: $F_{hkl} = |F_{hkl}| e^{i\phi_{hkl}}$

* x_n , y_n and z_n are atomic fractional coordinates: $x_n = x/a$, $y_n = y/b$, $z_n = z/c$

Systematic Absences

- Example: Po
 - Primitive cubic (*Pm-3m*)
 - a = 3.352 Å

a (A)	a^2 (A^2)	h	k	I	2-theta (deg)	
3.352	11.236	1	0	0	26.570	
3.352	11.236	1	1	0	37.929	
3.352	11.236	1	1	1	46.909	
3.352	11.236	2	0	0	54.722	
3.352	11.236	2	1	0	61.840	
3.352	11.236	2	1	1	68.511	
3.352	11.236	2	2	0	81.078	
3.352	11.236	2	2	1	87.164	
3.352	11.236	3	0	0	87.164	
3.352	11.236	3	1	0	93.218	

Example: Co

- Face-centred cubic (*Fm-3m*)
- a = 3.544 Å

a (A)	a^2 (A^2)	h	k	I	2-theta (deg)
3.544	12.560	1	0	0	25.107
3.544	12.560	1	1	0	35.802
3.544	12.560	1	1	1	44.229
3.544	12.560	2	0	0	51.532
3.544	12.560	2	1	0	58.157
3.544	12.560	2	1	1	64.334
3.544	12.560	2	2	0	75.868
3.544	12.560	2	2	1	81.392
3.544	12.560	3	0	0	81.392
3.544	12.560	3	1	0	86.836

Systematic Absences

> Cell centring:

Centring	Reflection condition				
I	h+k+l=2n				
F	h , k , l all even/all odd				
A	k + l = 2n				
В	h + l = 2n				
С	h + k = 2n				

hkl: k+l=2n

> Translational symmetry elements:

 $0, \frac{1}{2}, \frac{1}{2}$

2 a I 0.0,0

C	ONTINUED		No. 14	P	$2_{1}/c$			
Ge	nera	ators se	lected (1);	t(1,0,0); t(0,1,0); t(0,1,0);	,0,1); (2); (3)			
Po: Mu Wy Site	sitio ltiplic ckoff sym	city, letter, metry		Coordinates			Reflection conditions General:	
4	е	1	(1) <i>x</i> , <i>y</i> , <i>z</i>	(2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$	(3) x,y,z	(4) $x, y + \frac{1}{2}, z + \frac{1}{2}$	h0l: l = 2n 0k0: k = 2n 00l: l = 2n Special: as above, plus	reflection conditions
2	d	I	$\frac{1}{2}, 0, \frac{1}{2}$	$\frac{1}{3}, \frac{1}{2}, 0$			hkl: k+l=2n	due to translational
2	с	I	$0, 0, \frac{1}{2}$	$0, \frac{1}{2}, 0$			hkl: k+l=2n	
2	b	I	$\frac{1}{2}, 0, 0$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$			hkl: $k+l=2n$	symmetry elements

Structure Determination

- 1. Diffraction pattern indexing \Rightarrow unit cell
- 2. Systematic absences/ reflection conditions \Rightarrow space group
- 3. Structure solution \Rightarrow finding approximate atomic positions
 - solution of the phase problem (approximate phases)
- 4. Structure refinement \Rightarrow final structure
 - iterative improvement of the fit between the observed and calculated intensities (by adjustment of structural parameters)
 - non-linear least squares
 - R-factor (%): measure of the agreement

Experimental Aspects

Laboratory X-ray Diffraction

Laboratory source: X-ray tube

- Electrons accelerated from a filament (W) into a metal target (Cu, Mo)
 - continuous spectrum (bremsstrahlung)
 - characteristic X-rays (electronic transitions)

Cu Kα: 1.54184 Å Mo Kα: 0.711445 Å

Synchrotron radiation

 Electrons moving at relativistic speed along a curved path

- 1. Tunable λ
- 2. High intensity
- 3. Highly monochromatic λ and highly collimated beam

Powder diffraction beamline I11, Diamond Light Source, UK

• Layout and area plan

Powder diffraction beamline I11, Diamond Light Source, UK

• Experimental hutch 1 (EH1): the diffractometer

Powder diffraction beamline I11, Diamond Light Source, UK

• Sample stage and detectors

Powder diffraction beamline I11, Diamond Light Source, UK

• Prepared samples in capillaries

Powder diffraction beamline I11, Diamond Light Source, UK

• Operation

I11_exp_start.mov

SXRD: Tunable Wavelength

Flux vs. energy

• I11 at Diamond: 6-25 keV (0.4-2.1 Å), optimised at 15 keV

 $I_x \propto I_o \; e^{-\mu x} \qquad \mu = f(E)$

- Optimising absorption
 - Minimising absorption (hard X-rays)
 - 2. Experiments away from absorption edges
 - 3. Experiments at absorption edges

- Applications of resonant (anomalous) scattering
 - Macromolecular xtl: multiple anomalous diffraction (MAD) phasing
 - Physics: exotic magnetism (skyrmions)

SXRD: Tunable Wavelength

Example 1: Minimising absorption

- Choose λ and capillary size so that: μ *r < 1.5
- What capillary size would you use to measure Bi_2O_3 with λ = 0.410 Å and 0.825 Å?

Information: Bi_2O_3 density 8.9 g/cm³; powder packing density 60%; RMM (Bi_2O_3) = 466.0; mass absorption coefficients for λ = 0.41 Å: Bi 31.520 cm²/g, O 0.378 cm²/g; for λ = 0.825 Å: Bi 156.000 cm²/g, O 1.836 cm²/g.

- Intensity ~10³ lab X-ray source
 - Small samples
 - Rapid data collections
 - Excellent statistics
 - In-situ experiments, complex sample environments
- Example 2: ZrMo₂O₈ ultra-rapid synthesis/in-situ SXRD
 - Negative thermal expansion (NTE) material
 - Cubic γ -ZrMo₂O₈ shows smooth NTE ($\alpha = -8 \times 10^{-6} \text{ K}^{-1}$) over a wide temperature range
 - Previously produced under kinetic control (e.g. dehydration of ZrMo₂O₇(OH)₂·2H₂O)
 - Metastable

JSO Evans et al., *JACS*, 131, 48, 17560, 2009.

Example 2: ZrMo₂O₈ ultra-rapid synthesis/in-situ SXRD

- Beamline ID11 at ESRF, Grenoble
- $\lambda = 0.19902(2) \text{ Å}$
- Stoichiometric amounts of ZrO₂ and MoO₃ packed into Pt capillaries (0.57 mm diameter, 0.04 mm wall thickness)

JSO Evans et al., JACS, 131, 48, 17560, 2009.

Example 2: ZrMo₂O₈ ultra-rapid synthesis/in-situ SXRD

• 0.25 s data collections; 480 patterns in 120 s

Example 2: ZrMo₂O₈ ultra-rapid synthesis/in-situ SXRD

- Cubic γ -ZrMo₂O₈ formed directly from oxides at 1400 K
- Can be quenched to room temperature
- Insight into the reaction pathways from quantitative analysis by Rietveld refinement (5 phases)

➢ Resolution: ∆d/d

- > Highly monochromatic λ and highly collimated beam
 - Narrow instrumental peak shape
 - Best resolution instruments: $\Delta d/d \sim 10^{-4}$
- Peak widths depend on:
 - Source
 - Instrument (optics)
 - Sample

$$Y(2\theta) = (Source \otimes Instrument) \otimes Sample$$

High vs Medium Resolution

Large vs Small Domains

Mechanochemically prepared small organic

Example 3: Analysis of Egyptian eye make-up (2000 BC)

Lab XRD suggested:

- Galena (PbS) and cerussite (PbCO₃) naturally occuring
- Laurionite (PbOHCI) and phosgenite $(Pb_2CI_2CO_3)$ very rare in nature
- High-resolution synchrotron XRD used for quantification
 - Laurionite and phosgenite up to 75%
- SEM used for particle morphology analysis
 - Particle morphology consistent with wet chemistry production
- Wet chemistry products
 - Purified (PbO, NaCl, Na₂CO₃)_{aq.}
 - Multiple solution reactions, filtrations, pH control
- Conclusion: Egyptians used wet chemistry ~2000 BC
 - Chemical technology in Ancient Egypt very sophisticated

Walter et al., Nature, 397, 483, 1999.

\succ Example 4: Bi₂Sn₂O₇ structure solution

• Phase diagram (old)

Cubic γ -Bi₂Sn₂O₇

Fd-3m a = 10.72 Å Interpenetrating Sn₂O₆ and Bi₂O' frameworks

IR Evans, JSO Evans et al., JACS, 138, 25, 8031, 2016.

, i.

 \succ Example 4: Bi₂Sn₂O₇ structure solution

- Beamline I11, Diamond Light Source, UK
- β -Bi₂Sn₂O₇ is not cubic
- Very important for the structure solution methodology used
- Exhaustive symmetry descent approach

- \succ Example 4: α -Bi₂Sn₂O₇
 - Monoclinic Cc
 - *a*=7.57 *b*=21.41 *c*=15.13 Å β=125°

Example 5: Bi₂La₈(GeO₄)₆O₃

- Oxide ion conductor
- Apatite structure type (normally hexagonal)
- $Bi_2La_8(GeO_4)_6O_3$ triclinic at room temperature

Very small unit cell distortions:
 a = 9.90376(10) Å, b = 9.89598(12) Å, c = 7.34622(7) Å
 α = 90.5638(9)°, β = 89.2007(8)°, γ = 120.1412(7)°,

- \succ Example 5: Bi₂La₈(GeO₄)₆O₃
 - High-resolution PD beamline, Australian Synchrotron, Melbourne
 - Phase transition to hexagonal above 700°C
 - Unit cell parameters extracted by Rietveld fitting of the data

IR Evans et al., Advanced Functional Materials, 27, 1605625, 2017.

Advantages over lab sources

- 1. Tunable λ
- 2. High intensity
- 3. Highly monochromatic λ and highly collimated beam

Disadvantages

- 1. Access: proposal, delay, limited beam time, no opportunity to repeat
- 2. Lack of control over options and conditions