

FRAP is governed by diffusion and chemical kinetics $A^{*} + B \bigoplus_{k_{off}} C^{*} \qquad [A^{*}] + [A] = [A^{*}]_{eq} \\ [C^{*}] + [C] = [C^{*}]_{eq} \\ \frac{\partial [A^{*}]}{\partial t} = D_{A} \nabla^{2} [A^{*}] - k_{on} [A^{*} [B] + k_{off} [C^{*}] \qquad \frac{d [B]}{dt} = 0 \\ the bound complex C is immobile \\ \frac{\partial [B]}{\partial t} = D_{B} \nabla^{2} [B] - k_{on} [A^{*} [B] + k_{off} [C^{*}] \qquad \frac{\partial [A^{*}]}{\partial t} = D_{A} \nabla^{2} [A^{*}] - k_{on} [A^{*} [B] + k_{off} [C^{*}] \\ \frac{\partial [C^{*}]}{\partial t} = D_{C} \nabla^{2} [C^{*}] + k_{on} [A^{*} [B] - k_{off} [C^{*}] \qquad \frac{\partial [C^{*}]}{\partial t} = k_{on} [A^{*} [B] - k_{off} [C^{*}] \\ \nabla^{2} = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} - the Laplace operator (Laplacian) \\ D - diffusion coefficient for each of the three species$ $k_{on} - kinetic rate constant of the forward reaction$ $k_{off} - kinetic rate constant of the backward reaction$ Sprague BL, Pego RL, Stavreva DA, McNally JG. Analysis of Binding Reactions by Fluorescence Recovery after PhotobleachingBindphys J (2004)**B6**: 3473-3495

FRET measuring techniques Intensity-based Acceptor photobleaching (irreversible photodestruction of acceptor absorption) Donor photobleaching FRET via fluorescence lifetime measurements
$E = 1 - \frac{Q_{DA}}{Q_D} = 1 - \frac{I_{DA}}{I_D} = 1 - \frac{\tau_{DA}}{\tau_D} = 1 - \frac{\tau_{bl,D}}{\tau_{bl,DA}} =$
$= \frac{\varepsilon_A}{\varepsilon_D} \cdot \left(\frac{SE}{I_A}\right) = \frac{\varepsilon_A}{\varepsilon_D} \cdot \left(\frac{I_{AD}}{I_A} - 1\right)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ au_{\text{DA}}$ - fluorescence lifetime of the donor in the presence of the acceptor
$\tau_{\rm D}$ - fluorescence lifetime of the donor in the absence of the acceptor
$\tau_{bl,DA}$ - donor photobleaching time in the presence of the acceptor
<i>i_{bl,D}</i> - donor photobleaching time in the absence of the acceptor
 Set - sensinged emission, increased acceptor (nucrescence emission intensity (1) e molar absorption coefficient

Fluoresco	ence Correlation Spectroscopy (FCS)
Milest	ones in FCS development
1905/19	06 Einstein and von Smoluchowski Fluctuation theory of light scattering
1911	Svedberg observed fluctuations in the number of colloidal gold particles under a microscope
1913	Perrin anticipated fluorescence fluctuation studies
195 7	Laser development
1957	Confocal microscope
1961/196	54 Solid state single photon detectors
1967	Autocorrelator
Moder Magde D, Elson EL, Ehrenber _i	work of

Fluorescence intensity distribution in the OVE

$$F(t) = \int_{V} I_{exc}(\vec{r}) \cdot Q(\vec{r}) \cdot S(\vec{r}) \cdot c(\vec{r},t) dV$$

 $\begin{array}{ll} I_{exc} & - \text{ laser intensity profile} \\ Q & - \text{ quantum yield of the fluorophore} \\ S & - \text{ photon detection sensitivity of the instrument} \\ c & - \text{ concentration of the fluorophore} \end{array}$

By combining all terms that characterize fluorescence emission and detection, and by assuming that the spatial distribution of the emitted light can be approximated by a three-dimensional Gaussian: . . .

$$W(r) = e^{-2\frac{x^2 + y^2}{r_0^2}} \cdot e^{-2\frac{z^2}{z_0^2}}$$

which decays to $1/e^2$ at r_0 in the lateral direction and for $z = z_0$ in the axial direction, fluorescence intensity distribution across the observation volume element can be described as:

 $F(t) = \int W(\vec{r}) \cdot c(\vec{r}, t) dV$

By substituting F(t) in the autocorrelation function and considering only free 3D diffusion:

$$\left\langle \delta c(\vec{r},0) \cdot \delta c(\vec{r}',\tau) \right\rangle = \left\langle c \right\rangle \cdot \frac{1}{\left(4\pi D\tau\right)^{\frac{3}{2}}} \cdot e^{\frac{(\vec{r}-\vec{r})^2}{4D\tau}}$$

the autocorrelation function for a single, freely diffusing species of molecules:

$$G(\tau) = \frac{1}{V_{eff} \langle c \rangle} \cdot \frac{1}{1 + \frac{\tau}{\tau_D}} \cdot \frac{1}{\sqrt{1 + \left(\frac{r_0}{z_0}\right)^2 \cdot \frac{\tau}{\tau_D}}}$$

$$G(0) = \frac{1}{V_{eff} \langle c \rangle} = \frac{1}{\langle N \rangle} \qquad \qquad \tau_D = \frac{r_0^2}{4D}$$

$$D = \frac{k \cdot T}{6\pi\eta_{\nu}R_{h}} \qquad \frac{1}{D} \propto \frac{6\pi\eta}{kT} \cdot \sqrt[3]{M}$$

Schwille P, Haustein E. Fluorescence Correlation Spectroscopy. An Introduction to its Concepts and Applications. Biophysics Textbook Online 2004

